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ABSTRACT

The combustion model including aluminum and iron oxide was employed
to correlate data bases of Miller and Maykut. Results for additive free
formulations were excellent for both rate and exponent; results for formulations
with aluminum and alumimum plus iron oxide were poor. A new method for
extracting particle size dependent information from rate/response function/
formulation data was developed from the statistical methodology itself and
employed to proceas the aforementioned data bases. Results were encourag-
ing; Miller's additive free and aluminum plus iron oxide data correlated very
well; Miller's aluminum data showed that increasing aluminum particle size
increases interactions among oxidizer modes; Maykut's data base showed that
aluminum induced interactions among oxidizer modes are decreased as iron
content increases, Results elucidate mechanisms for rate, exponent, and
response function control and show that the equal rate hypothesis employed in
much combustion modeling is incorrect, A new approach for including the
effects of transients introduced by particle size dependent rates in both steady
and nonsteady combustion modeling was conceived.

Goals of embedding Williams/Guirao AP decomposition model and
Cohen nitramine model in the combustion model were not reached.
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INTRODUCTION

Increasing emphasis on low visible exhaust signature in tactical appli-
cations of solid rocket motors has virtually eliminated significant amounts of
condensed phases from the products of combustion. This has created a
number of problems.

1. At equal total solids contents replacement of metal additive
with AP reduces specific impulse.

2. Replacement of metal additive with oxidizer alters the
relationship among rate, formulation, and environment.

3. Replacement of metal additive with oxidizer increases the
probability of combustion instability because particle damp-
ing is absent.

The upshot is that propellant formulation is more difficult in the low signature
area; all constraints imposed on a high signature formulation must be met at_
a higher total solids loading (if equivalent energetics are demanded) with
greatly enhanced probability of combustion instability plus a new constraint-
signature,

Propellant formulation has long proceeded in largely empirical channels.
However, deviations of low signature formulations from the rate/formulation/
environment relations established largely for metallized propellants over the
past two decades, introduction of ingredients outside the historical data base
(nitramines, ultra fine aluminum oxide, etc), and the importance of combus-
tion instability have all contributed to increasing cost and risk of low signature
propellant development efforts relative to those for similar high signature
propellants, The economics of an empirical approach are strongly related to
the cost of gathering data. With high signature systems only passing attention
was paid to combustion stability; this is not the case for low signature
systems. As a result, determination of propellant properties related to
combustion stability accounts for a substantial portion of the aforementioned
cost/risk differential.

Theory(l) shows that steady and nonsteady combustion phenomena are
related for homogeneous propellants when the frequency is not too high. On
phenomenological grounds a steady/nonsteady relation must also exist for
composite propellants, However, it is not that for homogeneous propellants.(z)
Since a steady/nonsteady relation means that propellant stability properties
can be computed from steady-state data, it would be of considerable economic
importance for low signature composite propellant development programs.
Unfortunately, the empirical path followed by propellant developers virtually
prohibits any possibility for discerning the aforementioned steady/nonsteady
relation.




The overall objective of this work is to construct an analytical model

' describing steady-state combustion of composite propellants. This is both a
worthy goal in itself (propellant constraints relate to steady-state properties)
and a necessary step to understanding nonsteady phenomena.
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T ECHNICAL DISCUSSION

Combustion Modeling

Reference 3 presents mathematical developments for a steady-state
combustion model of composite propellant with additives. Basically, a
statistical procedure is employed to account for oxidizer particle size and
additives are divided into either active or passive categories. In the former
category, the additive modifies the kinetics of the deflagration process; in
the latter the additive acts solely as an inert heat sink. In this program this
model has been transformed into an operational computer code and employed
to correlate experimental data,

The data bases of Miller(4) and Maykut(s) have been employed to test
the model. Miller's data base includes additive free, aluminum additive, and
aluminum plus iron oxide additives, Maykut's data base includes aluminum
and varying amounts of iron oxide. Both data bases are for HT PB/AP formu-
lations and have similar total solids contents.

The correlation process proceeded as follows. First, basic parameters
were adjusted to give a ''best'' fit with Miller's additive free data. Second,
with these parameters, rates and exponents were predicted for Miller's 24
micron aluminum additive formulations (no additional parameters are required
to account for passive additives). Third, parameters associated with the
iron oxide catalyst were adjusted to give a best fit to selected rate vs catalyst
data in Maykut's data base. Fourth, rates and exponents were predicted for
the formulations in Miller's 24y aluminum plus 1% iron oxide data base and
the remainder of Maykut's data base.

Results for Miller's additive free data are reported elsewhere.(6) The
correlation was superb for both rate and exponent. The standard error of
estimate of the correlation was roughly 6 percent., This is of the same order
as errors in the burning rate measurements themmselves. Consequently, the
correlation is essentially as good as the data itself,

Figures 1 and 2 present the correlation of Miller's 24 micron aluminum
data (formulation set SD-I-88). It is clear that appreciable scatter exists.
Examination of the outlyers* shows that, in general, they are formulations
possessing a ''wide' distribution. Consequently, the present model seems
adequate only for metallized propellants with narrow distributions. As Miller
has pointed out elaewhere(7), the addition of aluminum causes interactions to
occur among particles of differing size. As presently constituted, the com-
bustion model does not include interactions.

*Numbers associated with the formulations are the formulation numbers
assigned by Miller.(4)




Figures 3 and 4 present the correlation of Miller's 24 micron aluminum
plus 1% iron oxide data (formulation set SD-VII-88). There is considerable
scatter in this correlation. However, when contrasted with the aforementioned
aluminum additive data the scatter does not appear to relate to wide and narrow
distributions. Indeed, it appears that there is a systematic error in the
predicted exponents (refer to the dashed correlation line) and that propellants
with rates below 1 in/sec systematically deviate from the above | in/sec
correlation. The latter behavior was evident in correlations of the same data
presented by Beckstead.(8)

Figures 5 and 6 present the correlation of Maykut's HT PB/AP/30y Al/
iron oxide data base. As before, there is appreciable scatter, However, the
character of the scatter differs from that of Miller's 24y Al plus iron oxide
data base, Here the outlyers are largely those with wide distributions.
Moreover, the rate correlation possesses a systematic deviation (dashed line)
while the exponent correlation doesn't.

In summary, correlation of these systematic data bases has shown that
the basic additive free model appears to be adequate while the model for
additives is inadequate, It is clear that metal additives cannot be treated as
simple heat sinks. However, problems with the present treatment of
catalysts are confounded with aluminum effects. An extensive catalyst data
base without metal additive is required to adequately define inadequacies in
the catalyst model.

Analysis of Data With the Statistical Framework

The aforementioned results show that the present combustion model is,
at present, inadequate for quantitative calculations with propellants containing
additives. In the combustion model errors can arise from two sources (a)
the statistical framework and (b) the unit combustion model. One suspects
that the statistical framework is more accurate than the unit combustion
model. Therefore, effort was expended to explore use of the basic statistical
framework to correlate data.

Correlation of Miller's additive free data had shown that best correlation
occurs when the pseudo-propellant oxidizer/fuel ratios are all equal. Thus,

o

0‘;" = M” so that the basic rate equation
— *
becomes M
- . w-a Z“- _ d
™ o §3, %A e FOI,L b/d (2)
-]

The integral in the latter equation is the mean mass flux from the pseudo-
propellant containing the kth oxidizer mode., Therefore, Eq. (2) can be
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rewritten as

— - —
mu OL” “-Z.\t.m“_nm\a‘L (3)

which leads to
M

- -1 Z & -
G =X, ey ox, & Ty (4)
since u,:';,b = u..". Differentiation of Eq. (4) leads to
"M
- -1
drt ® “‘ox u 6.. elr /r (5)
k=
Therefore, algebraic manipulation yields
mo, = (%, A %M M (6)
g;'t =(k '}3 2 wm'kr;_ B (7
Ry, = (8, T, J Z,"“'ou,b- " Ry (8)

These equations assert that the ballistic properties of composite pro-
pellants should be expressible in terms of modal properties. On the other
hand, experimental data can be analyzed to determine these modal properties.
That is, if ballistic data from at least N formulations with the same chemical
composition but differing median oxidizer size were available, the ?k, T, etc
(k=1, N) could be computed from that data. Once these ?k, 7y, etc (k=1,N)
were known, the ballistic properties of any formulation with that chemical
composition could be computed, Consequently, ballistic properties of all
members of a bimodal family with fixed chemical composition but differing
particle size could be defined from ballistic data for just two members; a
trimodal family would require data from three members.

In short, it appears that the statistical framework offers some exciting
possibilities for generalizing experimental ballistic data. In addition, the
modal pseudo-propellant properties demonstrate the effects of particle size
and additives at a level much closer to the unit combustion model, There-
fore, the 'statistical framework approach' also offers some exciting possi-
bilities for assisting the theoretical modeling.

To test the "‘accuracy’ of the statistical framework for correlating
ballistic data a computer code for extracting the best, in a statistical sense,

8
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?k,;\-‘H from any data set was developed. Appendix B presents the code and a
sample case illustrating input and output. Figures 7 and 8 present the
correlation of Miller's additive free rate and pressure exponent data while
Table 1 presents the best fit T} and_nk. Correlation in all cases is superb.

Figures 9 and 10 present the correlation of Miller's 24 micron
aluminized propellant data while Table 1 presents the best fit T} and'ik.
The presence of of aluminum degrades the correlation. However, data scatter
is much less than that shown by Figures 1 and 2. Therefore, an appreciable
portion of the inaccuracy in the theoretical model must be attributable to the
unit combustion model. It is important to note that the data outlyers are
generally associated with formulations possessing wide oxidizer distributions.
Consequently, there is every reason to believe that if interaction effects were
included in the statistical framework the outlyers would be brought into the fold.

Figures 11 to 14 present correlations for Miller's 6 micron and 90
micron aluminized propellant data while Table 1 presents the best fit ?k and
7). Comments pertinent to the individual data correlation are essentially the
same as those for the 24 micron data. However, when Figures 9, 11, and 13
are viewed in sszquence it is obvious that the correlation degrades with in-
creasing aluminum particle size. This trend is also evident in the standard
error of estimate data of Table 1. Thus, interaction effects must increase
with increasing aluminum particle size.

Figures 15 and 16 present correlations for Miller's 24 micron plus §
percent iron oxide propellant data while Table 1 presents the best fit ?k and
N,. Correlation of this data is superb. Clearly, as Miller has noted, the
addition of 1% iron oxide has suppressed (or compensated for) interactions
among the oxidizer particles.,

Table II presents modal rates and exponents and statistical ineasures
of the correlation of Maykut's data base. Several trends are noted, First,
the correlation improves as pressure decreases. This suggests that inter-
actions are related to transport property effects since kinetics become of
increasing importance as pressure decreases. Second, the correlation
improves as catalyst content increases, This shows that catalyst progressively
cancels (or compensates) interactions. Note that in Miller's data 1% catalyst
eliminated interactions while 2% catalyst is required here. Third, note that
catalyst has little effect on the 16y mode; effects appear to be concentrated in
the coarse and fine modes.

The above results show that the correlation methodology possesses
excellent capabilities for extracting modal properties under circumstances
when interactions are small. Data from these situations may be employed to
elucidate particle dependent combustion phenomena, Figure 19 presents the
variation of modal burning rate with volume mean particle size for Miller's
additive free formulations. It is clear that burning rate depends strongly
upon oxidizer particle size and that variation is pressure dependent. Note
that at 500 psi there is little variation of rate with particle size for particles

9




below 10y. This indicates that small particle rates are kinetic rather than
diffusion limited. Note that this situation alters as pressure increases,
Figure 20 compares the diametral dependence of burning rate with formulation
for Miller's data base, The addition of aluminum substantially degrades the
burning rates of fine material while producing relatively little effect on the
coarse modes. The addition of catalyst causes substantial increases in the
burning rate of both fine and coarse AP modes but little effect in the 50 to
100y range. Figure 21 illustrates the dependence of modal exponent on
volume mean diameter of the mode for several formulations in Miller's data
base. For the additive free formulation exponent increases to unity as
diameter decreases. This indicates that as diameter approaches zero rate
control shifts to a kinetic mechanism. The surprising result is the tendency
for exponent to increase for very coarse oxidizer modes. The mechanism
for thig increase is not known. However, the combustion model predicts this
trend. The effect of both aluminum and catalyst is primarily to suppress
high exponents at small particle sizes,

The modal property trends shown in Figures 20 and 21 explain many
formulation trends. For example, rate is sensitive to the amount of coarse
material because rate is weighted solely by mass fraction, However,
exponent is much less sensitive to the amount of coarse material because the
exponent is weighted by both mass fraction and rate and the modal rates of
coarse material are low. Thus, rate tends to be controlled by both coarse
and fine while exponent is largely controlled by the fine fraction. With the
data in hand it is clear that high exponent (n> 0. 7) formulations with significant
metal content are highly improbable in a HTPB/AP/Al/Iron Oxide system; the
modal exponents are all low. On the other hand, high exponent can be readily
achieved in an additive free system simply by incorporating small diameter
fines,

It appears that inert additives act to suppress both rate and exponent of
fine AP. Rate can be restored with a catalytic additive, but exponent appar-
ently cannot. This suggests that inert additives should provide means Jor
reducing exponert independent of particle size control while a mixture of inert/
catalytic additives should provide means for controlling both rate and exponent
independent of particle size control.

The functional similarity of Eqs., 6 and 8 and the fact that R t approaches
'r'it as frequency approaches zero suggests strongly that technigues for
exponent control should carry over into control of pressure coupled response.
From the arguments presented above it is seen that propellants formulated
with significant amounts of coarse AP should possess both low exponent and
low pressure coupled driving. Moreover, inert additives should be excellent
stability additives. These trends have substantially been borne out. (10) The
efficacy of inert additives has generally been laid at the doorstep of particle
damping. However, the above suggests that part of the observed effects may
be attributed to reduced pressure coupled driving.

It is important to note that the R_, n "analogy'' is definitely not exact.
The reason is that the frequency where the response function peaks varies with
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the thickness of the subsurface energy store which varies locally with rate.
What this means is that dynamic effects cloud the issue. Therefore, the
above formulation generalizations will probably vary with frequency.

It is unfortunate that available data bases do not usually contain either
temperature sensitivity or response function information (Miller's data base
will eventually supply limited response function information), Without
systematic data in these areas we are simply working in the dark.

Strategy for Inclusion of Nonsteady Phenomena in Combustion Modeling

Combustion phenomena in composite propellants is inherently nonsteady
at the single particle level. That is, even when the environment is quiescent
r=r (x,t) where x denotes position on the burning surface. This, in turn,
implies that T, = 'I's (x,t)and q''5 = q"; (x,t). However, all steady-state
combustion models are functionally equivalent to the assumption that q''y and
Tg are not functions of time, This is justified by assuming that transient
phenomena cancels in the summation to a mean state. If the mean state is to
be one of the accessible physical states, this assumption is generally false;
the magnitude of the error introduced by this assumption is unknown,

The success of the steady-state models in dealing with Miller's additive
free formulations suggests (but does not prove) that when the environment is
quiescent these errors are small. However, in models that employ the equal
rate hypothesis r(D) = r(D+AD) surface temperature, subsurface energy
store, and surface heat flux are equivalent for all particles, Consequently,
for low and midfrequency response where the chemically reactive zones behave
quasi-steadily, the response function should possess characteristics similar
to those of a homogeneous propellant {single relative maximum). On the other
hand, if r(D) £r(D + AD) surface temperature and heat flux are not unique.
Therefore, the possibility of a multi-relative maximum response function
exists. The factor tnat distinguishes among these possibilities is the sub-
surface temperature profile,

In existing nonsteady models approximations have been introduced.
Condon and Glick{2) have assumed that each monodisperse pseudo-propellant
in the set representing the compositquropellant possesses its equilibrium sub-
surface temperature profile, Cohen(9) has introduced the particle diameter
as a length scale and thereby assumed the characteristic thermal thickness is
proportional to particle size, Results depend strongly upon these assumptions. 2

The major difficulty with current approaches to the condensed phase

heat transfer aspects of the composite propellant combustion problem is that
they are deterministic when the physical problem has a probabilistic character.
For steady-state probabilistic phenomena probabilities in the spatial domain

at fixed time are equivalent to probabilities in the temporal domain at fixed
spatial coordinates. Thus, in a one-dimensional sense the propellant can be
viewed as a super Dagwood sandwich of the monodisperse pseudo-propellants
(refer to Figure 22). As the monodisperse pseudo-propellants all possess

11




the same bulk thermal properties in the mean, these properties are common

to the sandwich layers. Therefore, the temperature field is governed by

oT/2% = K Zl-r/m; -r 9T /2y (6)

The initial condition is clearly
T(-o,£) = T, (7

Following Z-N( 1)

appropriate boundary ''conditions'' that enable computation
of r{t) are

r=r (q"_s_, p, D) (8)
T, =TB(Q"-§-. p. D) (9)
P = pit) (10)

In conventional Z-N strategy r and Tg are not functions of particle diameter
because conventional Z-N strategy applies solely to homogeneous propellants,
Since deflagration occurs through a layered medium here the additional
independent variable must occur.

The Z-N boundary conditions can be derived from any steady-state
source since the Z-N form of the boundary conditions is independent of time
as long as the reactive regions ars quasi-steady. The obvious source is
from a detailed combustion model. However, by employing the aforementioned
methodology to extract modal properties from experimental data a source
much closer to basic experimental data may be available, The latter approach
is in the original spirit of Z-N methodology which was aimed at circumventing
need for combustion modeling.

The last question to be answered is how are the ps eudo-propellant
layers arranged., The answer of course is randomly such that the probability
of finding pseudo-propellant with ®$ D £ D+dd is equivalent to the volume
fraction of that pseudo-propellant inthe propellant recipe. This is the
probabilistic aspect of the problem.

The output of this approach for a small sinusoidal environment variation
will be both the mean burning rate and the small signal response to that
variation (pressure coupled response function). In addition, mean rates and
small signal response functions for each pseudo-propellant should be recover-
able,

¥The methodology can also account for velocity coupllng.“)
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Theaoretical Rate

Experimental Rate

Figure 3. Burning Rate: Calculated versus Experimental for Miller's 24 micron Aluminum
plus 1% Iron Oxide Data Base (SD-VII-88)
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Figure 4. Burning Rate Exponent: Calculated versus Experimental for
Miller's 24 micron plus 1% Iron Oxide Data Base (SD-VII-.88)
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. b

Theoretical Exponent
=)

0.4

0.5 0.6 0.7

Experimental Exponent

0.8 0.9

Figure 6. Burning Rate Exponent: Calculated versus Experimental for Maykut's Data Base




W . | ] ] |

/ / p =000 pSi

1.5
1.3
1.1 ¢
¢}
LY
(]
S~
c
= o.9L
2
]
o~
3
E 0.7
3
S
o
®)
0.5
0.3
0.3
Figure 7.

0.5 0.7 0.9 1.1 1.3 1.5
Experimental Rate, in/sec

Burning Rate: Calculated versus Experimental for Miller's
Additive Free Data Base (SD-11I-88)

19




Calculated Exponent

1.0 //sﬂ

p = 1000 psi

0.8 0.9 1.0

Experimental Exponent

Figure 8. Exponent: Calculated Versus Experimental for Miller's
Additive Free Data Base (SD-III-88)
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Figure 9. Burning Rate: Calculated versus Experimental for
Miller's 18% 24-micron Aluminum Data Base
(SD-1-88)
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Figure 16. Burning Rate Exponent: Calculated versus Experimental
for Miller's Extended Solids Data Base (SD-VI-90)
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Figure 22, Schematic Illustrating Arrangement of Pseudopropellants
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b
. APPENDIX A

k‘ NOMENC LATURE
D particle diameter
E error
Fox, K distribution function for the kth oxidizer mode
m mass flux
M number of oxidizer modes
n pressure exponent
N number ~f formulations
P pressure

h 95 heat flux at the burning surface in the condensed phase
r burning rate

Rp pressure coupled response function
H .
; t time
% T temperature
Yy spatial coordinate
o oxidizer mass fraction
crp temperature sensitivity at constant pressure
37
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Subscripts

D denotes particles with Ds D< D +AD
j denotes jth formulation
k denotes kth oxidizer mode
n denotes exponent
o denotes initial conditions
ox denotes oxidizer
r denctes rate
] denotes conditions at burning surface
t denotes total propellant
b
Special

) bar over denotes a mean value
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APPENDIX B
MODAL PROPERTIES CODE

This computer program extracts modal properties from multi-modal
propellant ballistic data according to the equations

M
e’ *_Z‘,ub.ru. /. B-1
R*‘g“LFL;“L /(% F.) B-2
]

where M is the number of oxidizer modes; a,, ;k' ;k are oxidizer mass
fraction (mass ox/mass propellant), modal burn rate, and modal exponent
respectively; o is the total oxidizer content; and T, and ﬁt are the measured
burning rate and pressure exponent respectively,

A nonlinear optimizer (PATSH) is employed to extract the ''best' modal

parameters Tor ﬁk k=1,M from a chemically consistent set of experimental
data 'Ft - ., M : j=1,N where N 2M. A chemically consistent data set is
one whé‘l‘e allJN formulations have the same chemical composition (variables

are modal recipe and environment). The ‘‘best" Fk, ﬁk is that which produces

the smallest

Py \J

En = A ZM-(F"-F;'}) /N

o Ry

for the ?k and the smallest

€, * Z”(a:--,;,‘,})‘ /n

’M ""g“

for the ;'k'

t,j» Ty j refers to test data and Ty, 0y to calculated (by Eqs. B.1 and
B. 2) results ft'lr the jth formulation. The ''search' for the T) begins with

Fe=Fy =T, and Ty =Ty =R -

The input format consists of two major units. The first card defines the
number of oxidizer modes, the number of formulations with these modes, the
number of pressures at which data was obtained, and those pressures. Sub-
sequent cards tabulate recipe, rate, and exponent for each formulation and
pressure in the sequence. Figure B. 1 illustrates a typical data set.

Here T,

39
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Output consists of the standard error of estimate of the fits and the r,
m k= 1,M. Figure B.2 illustrates results obtained from the Figure B. 1 data
set. Figure B.3 lists the Fortran IV code.
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